.. PROTAC-Degradation-Predictor documentation master file, created by sphinx-quickstart on Mon Aug 23 17:31:15 2021. You can adapt this file completely to your liking, but it should at least contain the root `toctree` directive. =========================================================== PROTAC-Degradation-Predictor: Documentation and Overview =========================================================== **PROTAC-Degradation-Predictor** is a Python package designed to predict the activity of PROTAC molecules using advanced machine learning techniques. The tool aims to assist researchers in evaluating the potential effectiveness of PROTACs, a novel class of drugs that target protein degradation. The package Github repository can be found `here `_. .. .. image:: https://yourimageurl.com/logo.png # Add your project's logo or any relevant image .. :align: center Introduction ============ PROTACs (Proteolysis Targeting Chimeras) are a class of molecules that induce the degradation of specific proteins. This package allows researchers to predict the activity of PROTACs by leveraging a variety of machine learning models, including XGBoost and PyTorch-based pretrained neural networks. The primary functionalities of this package include: - Predicting PROTAC activity using different machine learning models. - Accessing curated datasets for training and evaluation. - Hyperparameter tuning and model training using Optuna. Features ======== - **Machine Learning Models**: Utilize XGBoost, PyTorch, and scikit-learn models to predict PROTAC activity (refer to the :func:`protac_degradation_predictor.protac_degradation_predictor.get_protac_active_proba` function). - **Dataset Handling**: Load and manage datasets specific to PROTAC research (refer to the :func:`protac_degradation_predictor.data_utils.load_curated_dataset` function). - **Customizability**: Tune model hyperparameters and experiment with different model configurations (refer to the :func:`protac_degradation_predictor.optuna_utils.hyperparameter_tuning_and_training` function). Quickstart ========== To get started with PROTAC-Degradation-Predictor, follow these steps: 1. **Installation**: Install the package using pip: .. code-block:: bash pip install git+https://github.com/ribesstefano/PROTAC-Degradation-Predictor.git 2. **Basic Usage**: Here's an example of how to predict PROTAC activity: .. code-block:: python from protac_degradation_predictor import get_protac_active_proba smiles = "CC(C)C1=CC=C(C=C1)C2=NC3=CC=CC=C3C(=O)N2" e3_ligase = "Q9Y6K9" target_uniprot = "P04637" cell_line = "HCT116" prediction = get_protac_active_proba( protac_smiles=smiles, e3_ligase=e3_ligase, target_uniprot=target_uniprot, cell_line=cell_line, device='cpu', use_models_from_cv=False, use_xgboost_models=True, study_type='standard' ) print(prediction) For more detailed usage and customization, refer to the relevant sections below. Contents ======== .. toctree:: :maxdepth: 2 :caption: Documentation Contents: source/modules source/protac_degradation_predictor source/protac_degradation_predictor.optuna_utils source/protac_degradation_predictor.protac_dataset source/protac_degradation_predictor.pytorch_models Getting Help ============ If you encounter any issues or have questions, please refer to the following resources: - **Documentation**: Full API documentation and user guide. - **GitHub Issues**: Report bugs or request features on the `GitHub Issues `_ page. - **Contributing**: Learn how to contribute to the project by reading our `Contribution Guidelines `_. License ======= This project is licensed under the MIT License. See the `LICENSE `_ file for details. About ===== **Author**: Stefano Ribes **Version**: v1.0.2 Built with Sphinx using the `Read the Docs theme `_. ---------- *This documentation was last updated on August 27, 2024.*