
Mapping Multiple LSTM models on FPGAs
Stefano Ribes, Pedro Trancoso, Ioannis Sourdis
Department of Computer Science and Engineering

Chalmers University of Technology
Gothenburg, Sweden

{ribes, ppedro, sourdis}@chalmers.se

Christos-Savvas Bouganis
Department of Electrical and Electronic Engineering

Imperial College London
London, United Kingdom

christos-savvas.bouganis@imperial.ac.uk

Abstract—Recurrent Neural Networks (RNNs) and their more
recent variant Long Short-Term Memory (LSTM) are utilised
in a number of modern applications like Natural Language
Processing and human action recognition, where capturing long-
term dependencies on sequential and temporal data is required.
However, their computational structure imposes a challenge when
it comes to their efficient mapping on a computing device due to
its memory-bounded nature. As recent approaches aim to capture
longer dependencies through the utilisation of Hierarchical and
Stacked RNN/LSTM models, i.e. models that utilise multiple
LSTM models for prediction, meeting the desired application
latency becomes even more challenging. This paper addresses
the problem of mapping multiple LSTM models to a device
by introducing a framework that alters their computational
structure opening opportunities for co-optimising the memory
requirements to the target architecture. Targeting an FPGA
device, the proposed framework achieves 3× to 5× improved per-
formance over state-of-the-art approaches for the same accuracy
loss, opening the path for the deployment of high-performance
systems for Hierarchical and Stacked LSTM models.

I. INTRODUCTION AND MOTIVATION

The recent advances in Machine Learning, especially Deep
Neural Networks (DNN), have reignited the interest of re-
searchers and practitioners on Neural Networks and their varia-
tions. With the abundant availability of data and computational
capacity provided by modern GPUs, training of large DNNs
with good generalisation properties became possible and led
to unprecedented performance. Systems that rely on DNNs
can efficiently perform a variety of tasks in applications from
computer vision, to image understanding, scene analysis [1]
and Natural Language Processing (NLP) [2].

In the case where long-term dependency capture is desired
on sequential and temporal data, such as in the case of image
captioning and NLP, Recurrent Neural Networks (RNN), a
form of Neural Network with feedback connections, have
demonstrated to be a suitable and efficient solution. However,
standard RNNs suffer from vanishing and exploding gradients
making their training a challenging task. An RNN variant, the
Long-Short Term Memory (LSTM) network [3], addresses the
above problem by introducing new structures, leading to their
quick adoption in a large number of applications.

In case where the latency or throughput of the developed
system is of concern, the mapping of LSTMs to a computing

This work was supported by the European Commission under the Horizon
2020 Program through the ECOSCALE project (contract no. 671632) and the
Swedish Research Council under the ScalaNetS project (2016-05231).

device is a challenging task, due to the low computation to
communication ratio and the inherent dependencies in the
LSTM operations. An LSTM network is based internally
on structures (i.e. gates) that resemble networks with fully
connected layers, that are manifested through matrix-vector
multiplication operations, followed by non-linear functions.
Any exploited parallelism is limited by the computational
dependencies of the LSTM structure (i.e. recurrent connec-
tion). Moreover, the above problem is further amplified when
multiple LSTMs need to be deployed as part of the application
in the form of independent parallel executed LSTMs. Such
case is where a number of independent outcomes are required
based on the same input data, or in the utilisation of Stacked
LSTMs [4], that extend the capabilities of LSTMs to longer
time intervals. Example of applications can be found in [5]
and [6], where Hierarchical Recurrent Neural Networks for
skeleton-based action recognition are proposed, as well as in
[7] where the authors propose a framework that utilises a
two-stream Recurrent Neural Network pipeline for the task of
action recognition. Finally, Li et. al. [8] propose a hierarchical
LSTM model for building coherent long text for natural
language generation and summarization.

Research effort in the efficient mapping of an LSTM to a
device has focused only on the case where a single LSTM
is required to be executed at any point of time [9], [10].
State-of-the-art approaches aim to increase the computation
to communication ratio by reducing the memory accesses and
computation cost through the investigation of parameter quan-
tization and compression, as well as by pruning of connections
(i.e. removing redundant network parameters [11]). Towards
the above effort, the existing space can be divided into methods
that require a re-training stage, allowing the methodologies to
produce highly optimised designs [10], and approaches such
as in [9] that assume no availability of data for retraining,
focusing more on the generality of the approach.

This paper departs from the previously published ap-
proaches by focusing on the problem of mapping multiple
LSTMs in a device, and more specifically in the case where
these LSTMs are independent of each other apart except that
they are part of the same application. Also, focusing on the
generality of the approach, no assumption on the availability
of training data is made.

The main contributions of the paper are as follows:
• a methodology is proposed for approximating for the

first time multiple LSTMs together, rather than each
separately; the methodology allows iterative refinement
of the LSTMs approximation leading to tunable and
improved computation to communication ratios.

• an approach that exposes the computational and memory
capabilities of the targeted device to the approximation
algorithm, through structured pruning over the introduced
refinement stages, leading to an architecture with im-
proved device utilisation.

To the best of authors’ knowledge this is the first work in the
literature that addresses the important and timely problem of
mapping multiple LSTMs on a device.

II. BACKGROUND

A. LSTM Networks

An LSTM network processes an input xt and produces an
output ht in every time-step t, where x and h denote vectors.
Key to the operation of the LSTM is its recurrent connection
of its output to its hidden units allowing the network to pass
information over a number of time-steps, where regulation of
the information flow is controlled through four modules called
gates. Figure 1 illustrates the flow of an LSTM, where the
details of the LSTM gates are given in Equation 1, where b
and � denote a bias vector and the element-wise multiplication
operator. The input gate, it, along with the cell gate ct
determine the amount of input information that propagates to
the output of the network, whereas the forget gate, ft, controls
the amount of previous information that will be maintained by
the network. The output gate, ot, determines how much of the
current state will be propagated to the network output.

The above gates are instantiated through non-linear func-
tions, such as sigmoid σ(·) or hyperbolic tangent functions
tanh(·), that operate on linear functions of the current input
xt and of the previous time-step output ht−1. Computationally,
each gate is based on matrix-vector multiplications, and it is
parameterised with a set of weight matrices, Wcur and Wrec,
responsible to modulate the current input and previous output.

it = σ
(
xt ·Wcuri + ht−1 ·Wreci + bi

)
ft = σ

(
xt ·Wcurf + ht−1 ·Wrecf + bf

)
ct = ft � ct−1 + it � tanh

(
xt ·Wcurc + ht−1 ·Wrecc + bc

)
ot = σ

(
xt ·Wcuro + ht−1 ·Wreco + bo

)
ht = ot � tanh(ct)

(1)

B. SVD-Based Approximation

Typical DNNs, including LSTMs, utilise matrix-vector mul-
tiplication operations leading to designs whose performance
is memory-bounded as a large number of parameters (i.e.
weights matrix) needs to be accessed for the computation
over a single input vector. Techniques to address this problem
rely on batching multiple input vectors, sharing the weights
access across multiple inputs, and/or pruning/approximating
the weight matrices, reducing as such the data that need to
be accessed per input. In the case of LSTMs, the former

x
t

Wcur Wrec

σ

h
t-1

Wcur Wrec Wcur Wrec Wcur Wrec

+

σ

+

tanh

+

σ

+

bf bi bc bo

x

x x

tanh x

c
t-1

c
t

h
t

f i

o
c

+

Fig. 1. LSTM flow for processing output ht and cell state ct at timestep t.

technique cannot be applied due to their recurrent connections,
and effort is placed on the latter approach in order to improve
the computation over communication ratio.

Possible techniques to prune/approximate the weights ma-
trix include weights quantization, pruning of certain weights
[10], as well as approximations of the weights matrix through
rank-1 decomposition [12].

Decomposition of a matrix through rank-1 approximations
expresses a matrix W as a linear combination of rank-1 matri-
ces. The decomposition is achieved through the Singular Value
Decomposition (SVD) algorithm that decomposes a given
matrix W into 3 orthogonal matrices U, S, V as W = USVT .
The original matrix W can be approximated by selecting to
utilise the first R rank-1 matrices of the decomposition (i.e.
the ones that correspond to the largest eigenvalues), where the
SVD algorithm guarantees the optimality of the approximation
under the Mean Square Error (MSE) metric. As such, the
matrix W can be approximated as:

W ≈
R∑
i

si ui vTi

where ui and vi correspond to the ith column and row of the
U and VT matrices respectively, while si is the ith element of
the main diagonal of the diagonal matrix S. The approximation
leads to a reduction on the amount of data that need to be
accessed as well as allows the matrix-vector multiplication
computation to be performed through a series of dot-product
calculations, as it will be shown later.

III. PROBLEM FORMULATION

The work considers the general problem of accelerating the
execution of multiple LSTM models that operate in parallel
on synchronised inputs, and the device of choice is an FPGA.
The parameters of the models are assumed to be stored in the
off-chip memory, increasing the applicability of the approach
to large problem sizes. The problem is formulated as follows:
given a set of N LSTM models Mi with weight matrices
Wi

type, with type ∈ {curgate, recgate} for gate ∈ {i, f, o, c},
and a target FPGA device D, derive an implementation that
minimises the latency of their execution. More specifically, the
work focuses on the case of a lossy mapping, where an error

in the approximation on the final results of the computation is
allowed but bounded by a user-specified threshold.

The proposed approach builds upon the work of Rizakis et
al. [9], but it extends their problem formulation to address
the case of multiple LSTMs. The key idea is to provide
a decomposition of the weight matrices of the LSTMs in
order to facilitate the necessary computations as a trade-off of
latency and quality of the final result, along side with providing
computational structures that would fully exploit the compute
and memory capabilities of the targeted device.

Towards this, the proposed approach is based on the Singu-
lar Value Decomposition algorithm applied to a set of input
matrices W1, ...,WN , producing a set of rank-1 matrices (i.e.
matrices that can be expressed as the product of two vectors
u(i), v(i)) whose linear combination constructs the original
input matrices. Such decomposition guarantees the least error
in the approximation of the input matrices under the Mean
Square Error (MSE) metric for a given number of rank-1
matrices used in the approximation [13].

As such, focusing on our problem formulation, the proposed
approach aims to produce a single set of rank-1 matrices that
approximates all the weight matrices of the same type Wi

type

across the N LSTM targeted models. Thus, our approach
allows us to share the u(i) and v(i) components across the
N LSTM models Mj , and in doing so reduces the memory
footprint of the models for a given targeted approximation
error. Equation 2 indicates the approximation of a single
matrix with R rank-1 matrices, where the type and gate
indices have been dropped for clarity.

WMj ≈
R∑
i=1

sj
(i) �

(
u(i) · v(i)T

)
, j = 1, ..., N (2)

Algorithm 1 lists the necessary steps for decomposing N
given weight matrices W1, ...,WN into the R components
u(i), sj(i) and v(i). The algorithm also sparsifies and quantizes
such components to improve the mapping to the device.

The algorithm begins by initializing a set of error matrices
E1, ...,EN and one set of approximated weight matrixes
W̃1, ..., W̃N . After initialization, for each of the refinement
steps R, the algorithm first updates the error matrices by
taking the difference between the original matrices and the
partially reconstructed ones, i.e. approximated (line 5). Upon
constructing the new error matrices, at line 6 we apply the
decomposition described in [13] to obtain the u(i), sj(i) and
v(i) components. This decomposition aims to minimize the
MSE of the approximated matrices reconstructed from the u(i),
sj

(i) and v(i) elements.
It has been shown in the literature that neural networks are

able to maintain their accuracy after the sparsification of their
weight matrices, i.e. setting most of their weight values to
zero, thanks to a process called pruning [11]. A standard de-
facto way of pruning a network consists of an iterative process
where a first step applies zero masks to the network matrices,
followed by a fine-tuning step, i.e. retraining process. In this
work, we propose a structured pruning of the u(i) and v(i)

Algorithm 1: Decomposition algorithm.
Data: N ×W weight matrices, R number of refinement steps, Tu and

Tv number of tiles, ZTu and ZTv number of tiles to prune.
1 begin
2 Ei ←− 0, i = 1, ..., N

3 W̃i ←− 0, i = 1, ..., N
4 for i in R do
5 Ej ←−Wj − W̃j , j = 1, ..., N

6 u(i), s(i), v(i) ←− decompose(E)
7 for j in ZTu do
8 zu(i)[j]←− argmin

k
{|mean

(
u(i)[k]

)
|}

9 u(i)[zu(i)[j]]←− 0 // pruning
10 end
11 for j in ZTv do
12 zv(i)[j]←− argmin

k
{|mean

(
v(i)[k]

)
|}

13 v(i)[zv(i)[j]]←− 0 // pruning
14 end
15 A←− Q(u(i)) · Q(v(i)T)

16 W̃j ←− Q(W̃j) + Q(s
(i)
j)� A, j = 1, ..., N

17 end
18 end

vectors that does not require retraining the network. Please
note that sj(i) are scalars and therefore are not pruned. In
order to prune, we first divide the vectors u(i) and v(i) into
Tu and Tv tiles respectively. Afterwards, we select the ZTu
tiles from vector u(i) and the ZTv tiles from v(i) that contain
the values with the minimum absolute magnitude, lines 8 and
12. Finally, all the elements of the selected tiles are assigned
to zero. Pruning reduces both the amount of operations needed
and the number of tiles, i.e. weight values, to be accessed.

Furthermore, a quantization operation of the pruned vectors
u(i) and v(i) and the scalars sj(i) (indicated with the Q(·)
operator) is performed, before the algorithm moves to the next
refinement step. The quantized vectors are multiplied together
to form a shared matrix A (line 15). The matrix A is then
multiplied by the quantized scalars sj

(i) and added to the
partial approximation matrix W̃j .

At the next iteration, the approximation matrices
W̃1, ..., W̃N will include the errors introduced by both
the pruning and quatization processes. The decomposition
step will therefore generate components u(i), s(i) and v(i)

that account for such errors, minimizing the overall MSE.

IV. ACCELERATOR DESIGN

In order to accelerate the execution of N LSTM layers, we
applied our approximation algorithm to the weight matrices
Wtype, with type ∈ {curgate, recgate} and gate ∈ {i, f, c, o}.
In particular, we approximated the weight matrices of the same
type and gate together, because we empirically found them to
have similar structures. For example, we made all the current
forget gates (Wcur

f) of the N LSTMs share the same u(i)

and v(i) vectors (we will refer to this operation as merging).
Merging same type of gate matrices overall yields lower MSE
compared to stacking the gate weight matrices together and
then approximating them. We believe that the reasons for this
are twofold: first, the size of the approximated matrices is
smaller, therefore the MSE can decrease quickly with fewer

... ...

Fig. 2. Reduce products xtj · u(i) with R = 8, Tu = 4 and ZTu = 2.

refinement steps R. Second, the gates across different LSTM
models perform a similar function and so the information
filtered out by our algorithm tends to be the same, thus
improving the approximation MSE. Nevertheless, the above
behaviour is application dependent and other constructions
should be considered.

Our FPGA accelerator’s key computation is the approxi-
mated vector-matrix multiplication of the N LSTM inputs with
the gate weight matrices, as exemplified in Equation 3, which
approximates the multiplication between the input vectors xtj
with the current forget gates weight matrices Wcur

f .

xtj ·Wcur
fj ≈

R∑
i=1

(
xtj · u

(i)
f

)
· sf (i)j

)
� v(i)f , j = 1, ..., N (3)

The matrix-vector multiplication is effectively decomposed
in three parts: a dot product (xtj · u(i)), a scalar-scalar mul-
tiplication (·sf (i)j) and finally a scalar-vector multiplication
(�v(i)

f). Equation 3 is applied to both the current and the
recurrent gates of the LSTMs, just by using, for the recurrent
gates, the previous output ht−1

j and the properly sized vector
components. Notice that all the elements of the equation are
quantized and that the vectors u(i) and v(i) are also pruned.
A visual example of the R dot products of Equation 3 is
depicted in Figure 2. In this example all the u(i) vectors
contain exactly two non-pruned tiles and two pruned tiles.
The pruned tiles of the u(i) vectors are dashed. Only the non-
pruned tiles participate to the final computation, thereby saving
time and resources required to perform the product.

The accelerator is designed in a dataflow fashion, illustrated
in Figure 3. Inputs and weights are stored in the DRAM
external memory and fed to the FPGA accelerator through
the four available high performance AXI ports which are
directly connected to the memory controller. Each AXI port is
connected to a Direct Memory Access (DMA) unit that feeds
the processing kernels with the respective data. The accelerator
is composed of the following main building blocks:

-KERNELS

u, s, v DMAs

 DMA
& DISPATCHER

 DMAs

FPGA

M
EM

O
RY

C
O

N
TR

O
LL

ER

 DMA
& DISPATCHER

SVD-KERNEL

SVD-KERNEL

SVD-KERNEL

SVD-KERNEL

SVD-KERNEL

SVD-KERNEL

SVD-KERNEL

i GATE f GATE c GATE o GATE

SVD-KERNEL

SVD-KERNEL

Fig. 3. The proposed dataflow accelerator architecture. The approximated
current and recurrent LSTMs gates are processed in parallel by eight SVD-
kernels. The σ-kernels compute the final steps of the LSTMs algorithm. The
DMAs stream the required inputs and weights from memory to the kernels.

a) SVD-Kernels: they are responsible of the execution of the
approximated matrix-vector operation of the LSTM gates,
as reported in Equation 3. There are a total of 8 kernels,
4 for the current matrices of the LSTM gates and 4 for
the recurrent ones.

b) Input DMAs and tiles dispatchers: they are in charge
of transferring the inputs of the two LSTMs from main
memory to the correct engines. In addition, they offer
temporary on-chip buffers to store the N LSTMs’ inputs
xtj and ht−1

j maximizing data reuse. Only the tiles cor-
responding to the non-pruned u-vector tiles are then read
from the buffers and broadcasted into the MAC units of
the SVD-kernels.

c) u, s, v DMAs: these DMA units fetch the non-zeroed tiles
of the u(i), v(i), sj(i) weight vectors to be streamed into
the SVD-kernels.

d) σ-Kernels: their task is to apply the gate biases and the
required non linear operations, listed in Equation 1, to
the product of the inputs with the approximated weight
matrices. There are N σ-kernels, one for each LSTM.

e) σ DMAs: these DMAs supply the data to the σ-kernels,
i.e. the bias vectors and the previous LSTMs cell states.
They also are used to write back the final computation to
main memory.

The block diagram of the input DMA, tiles dispatchers and
SVD-kernel is shown in Figure 4. The SVD-kernel computes
Equation 3 and is composed of two types of units: U-unit and
V-unit. Within the kernel, there are N U-units and N V-units.
The U-units are responsible for computing the dot product
reported in Equation 4.

xu
(i)
j = xtj [nzu

(i)
k] · u(i)[nzu

(i)
k],

j = 1, ..., N ; k = 1, ..., Tu − ZTu
(4)

Each U-unit includes Tu − ZTu parallel multiply-accumulate
blocks and an adder tree. In order for the U-units to perform
their computation, the N input tiles dispatcher supply the non-
pruned input tiles, while the u(i) tile dispatcher broadcasts the
non-pruned tiles. Thanks to the list of indexes nzu the N input
tiles dispatchers read the input tiles corresponding to the non-
pruned tiles of u(i) and then stream them from their on-chip
buffers to the respective MACs within the corresponding U-
unit (recall Figure 2).

x
x

x DMA &
DISPATCHER

U-UNIT x V-UNIT

 WEIGHT TILES
DISPATCHER

DMA

 WEIGHT TILES
DISPATCHER

DMA

DMA

u, s, v DMAs

DMA DMA

...

MAC

MAC

MAC

...

MAC

SH
AR

ED
BU

FF
ER

S

MAC

MAC

MAC

...

MAC

AC
C

U
M

U
LA

TI
O

N
 B

U
FF

ER

 DMA &

DISPATCHER

INPUT
DMA

IN
PU

T
BU

FF
ER

S

MAC

+

MAC

+

...

+

+

+

+

+

+

MAC

MAC

MAC

+

MAC

+

...

+

+

+

+

+

+

MAC

MAC

IN
PU

T
TI

LE
S

D
IS

PA
TC

H
ER

Fig. 4. Dataflow architecture of one of the eight SVD-kernels for processing
four LSTMs. The kernel is composed of two types of sub-blocks, the U-Unit
and the V-Unit. There is one set of U-Unit and V-Unit per input. All U-Units
(V-Units) are fed by the same u(i) DMA and u(i) weight tiles dispatcher
(v(i) DMA and v(i) weight tiles dispatcher), since the u(i) and v(i) vectors
are shared across the different LSTMs.

The N × R scalars xu
(i)
j produced by the U-units are

then multiplied by the s
(i)
1 , ..., s

(i)
j scalar components and

forwarded to the kernel’s V-units as xs
(i)
j . The V-units per-

form the operations in Equation 5, i.e. the last step of the
approximation process.

xtj · W̃j ≈
R∑
i=1

xs
(i)
j � v(i)[nzv

(i)
k]

j = 1, ..., N ; k = 1, ..., Tv − ZTv

(5)

Like for the U-units, there is a weight dispatcher which is in
charge of supplying the V-unit’s MACs with the non-pruned
v(i) vector tiles. In order to multiply and accumulate the x(i)sj
scalars with the non-pruned v(i) weight elements, each V-
unit utilizes a partitioned accumulation buffer. The buffer is
partitioned tile-wise to allow parallel access to it from the
MACs. Once the refinement steps are completed, the V-units
stream out the final approximated products xtj · W̃j from their
accumulation buffers.

Finally, the results of the SVD-kernels are streamed to the
σ-kernels for applying the last non-linear functions required
by the LSTMs.

V. PROPOSED FRAMEWORK

In this section we describe a framework for identifying
the combination of design parameters which best tradeoff the
accuracy and execution time of accelerating N LSTM models.
The initial part of the section describes our methodology, while
the next and final one details the roofline model we use to
estimate the performance of our accelerator during the design
space exploration phase.

TABLE I
LIST OF DESIGN PARAMETERS OF THE FRAMEWORK.

Symbol Description
R Amount of refinement steps.
Tu Number of tiles of the u(i) vectors.
ZTu Number of pruned tiles of the u(i) vectors.
Tv Number of tiles of the v(i) vectors.
ZTv Number of pruned tiles of the v(i) vectors.
B Byte size of the quantized LSTM’s input and weight values.

A. Methodology

There is a large number of design parameters, i.e. number of
refinement steps, tile size, pruning percentage and quantization
(detailed in Table I), each having a large range of possible
options, which make the design space huge and impractical to
search exhaustively. We have defined the following methodol-
ogy to select one, or at most a few, design points, which are
promising for achieving a good performance-accuracy trade-
off and fit in the target FPGA device.

First, we set particular performance and accuracy goals, as
well as the resource constraints for our target design. Designs
with accuracy below a certain threshold or excessive need
for resources are not further considered. However, measuring
actual accuracy requires heavy application-level simulation
of the particular design point. Similarly, measuring actual
resource requirements and performance requires a design
implementation, which is time consuming. Our experiments
indicate that the most critical and limited device resources
are the DSP slices and BRAMs, for which analytical models
have been developed. The proposed approach adopts analytical
models that provide indications for accuracy, need for critical
resources, as well as for performance for each design point.
Based on these models we select the most promising design
points for further evaluation and eventually implementation.

Second, we search the design space based on the accuracy
criterion. We get an indication of the accuracy drop compared
to the original application (before SVD approximation, prun-
ing and quantization, etc.) using the average Mean Square
Error (MSE) between the original stacked weight matrices W
and the SVD approximated ones W̃, defined in Equation 6.
Subtraction and square operations are performed element-wise.

MSE(W, W̃) = mean
(
(W− W̃)2

)
(6)

Our conjecture, confirmed in the next section, is that a
small MSE is a necessary condition for low accuracy drop.
Consequently, design points with MSE below a MSE threshold
(TMSE) are selected for further evaluation. These design
points are subsequently selected for simulation in order to
measure their actual accuracy drop. Out of those, the design
points with actual accuracy drop below our accuracy threshold
(Tacc) are selected to continue in the next step of our design
space exploration process.

Third, the design points that passed the accuracy check
are then evaluated for their resource requirements and per-
formance. In order to avoid generating a hardware imple-
mentation for all of them, the need for DSP slices and

BRAMs is estimated. Designs that need more critical resources
than available on the device are dropped. Subsequently, the
attainable performance based on our roofline model (described
in the following subsection) is used to estimate their execution
time as in Equation 7.

texe =
Nops

Attperf

[
Ops

Ops/s

]
(7)

The designs with the lowest attainable execution time are
finally implemented in the FPGA board at hand and their
actual performance is measured.

B. Roofline Model

For estimating the execution time of our FPGA accelerator
we derive a roofline model for calculating the attainable
performance of the possible designs [14], [15]. The attainable
performance is defined in Equation 8 as the minimum value
between the Computational Performance (CP) and the product
between the maximum available bandwidth of the system Bw
and the Communication To Computation ratio (CTC).

Attperf = min
{
CP, CTC ·Bw

}[Ops
s

]
(8)

The CP can be estimated as in Equation 9, where Nops
and Ncycles are the total number of performed fixed point
operations and the estimated amount of execution cycles,
respectively.

CP =
Nops

Ncycles · 1
fclk

[
Ops

s

]
(9)

For our accelerator, the amount of required operations is
reported in Equation 10. In an LSTM there are four gates,
each including a pair of current and recurrent matrices, giving
8 matrices in total, four of which having dimension I × H
and four H ×H . The U-units and V-units perform a series of
MAC operations, so 1 MAC corresponds to two operations.
The amount of non-linear operations on each hidden value
is estimated to be equal to 24, leading to Nopsσ amount of
operations for the σ-kernel.

Nops = N · (Nopsu +Nopss +Nopsv +Nopsσ)

= N · (Nopsu +R · 8 +Nopsv + 24 ·H)

Nopsu = R ·
(
4 · (Tu − ZTu) ·

(I
Tu

+
H

Tu

))
· 2

Nopsv = R · 8 · (Tv − ZTv) ·
H

Tv
· 2

(10)

In order to finally compute the CP value, we need to
estimate the required execution cycles, i.e. the accelerator’s
latency. The accelerator’s latency is reported in Equation 11.
Since the accelerator is designed in a dataflow fashion, we
only consider the slowest accelerator’s module and therefore
the overall latency will be the maximum latency value among
the hardware modules. Please notice that each LSTM weight
matrix is mapped to a different SVD-kernel, so there are
8 SVD-kernels in total running in parallel. The N inputs,

corresponding to N LSTM models, are also processed in
parallel within each SVD-kernel.

Ncycles = max
{
Ulatency, Slatency, Vlatency, σlatency

}
= max

{
Ulatency, R, R (Tv − ZTv), 7

H

Tv

}
Ulatency = R max

{ I

Tu
,
H

Tu
, log2(Tu − ZTu)

}
(11)

The last value we need for calculating the attainable perfor-
mance is the CTC, which is reported in Equation 12. The CTC
is defined as the ratio between the total number of operations
Nops in Equation 10 and the total amount of transferred data
(in Bytes), reported in Equation 13.

CTC =
Nops

in+ out+ w + nz + bias

[
Ops

Byte

]
(12)

in+ out = N ·
(
(I +H) + 2 H

)
·B

nz + bias = R · 8 · (Tu + Tv)/8 + 4 ·H ·N ·B
w = usize + ssize + vsize

usize = R · 4 · (Tu − ZTu) ·
(I
Tu

+
H

Tu

)
·B

ssize = R · 8 ·N ·B
vsize = R · 8 · (Tv − ZTv) ·H/Tv ·B

(13)

The values that need to be read and written are divided in
several groups. The in and out values comprise the input and
output vectors for the N LSTM models. The weights that the
accelerator requires are the bias values, the non-zero indexes
nz (which are bit vectors of size proportional to the amount
of tiles Tu and Tv) and finally the approximated weight values
w. The value of w includes the u, s and v components, which
sizes are referred to as usize, ssize and vsize.

VI. EVALUATION

In this section we describe the experimental setup and
present a validation of the models described in the previous
section followed by the evaluation of the proposed design in
terms of performance and obtained accuracy.

A. Experimental setup

For the evaluation of the proposed framework, a multi-
ple LSTM model that is trained for the Fashion MNIST
dataset [16] is utilised. The Fashion MNIST dataset is a drop-
in substitute for the MNIST dataset, but the classification task
is considered more challenging [17], [18]. The targeted net-
work model consists of two main branches, each containing an
LSTM model [19]. For performance results, the software runs
on the Processing System (PS) of the FPGA, which features
four Cortex-A53 MPCore processors, ARMv8 architecture,
running at 1.2GHz. The accuracy was tested by plugging in our
HLS implementation to the Keras execution flow. The neural
network was modeled in Keras 2.2.4 using Tensorflow 1.13.1
as a back-end.

10 2 10 1

MSE

0

20

40

60

80
Ac

cu
ra

cy
 D

ro
p

[%
]

float-32
fix-16
fix-8

0.002250.00250

0.0

2.5

5.0

7.5

Fig. 5. Correlation between accuracy drop and MSE of the approximation.

For the evaluation of the proposed hardware architecture
(denoted as SVDn-HW), we used a Xilinx Zynq UltraScale+
MPSoC ZCU104 FPGA. In order to generate the description
of the hardware module from its high-level representation, we
used Xilinx SDSoC 2018.3 tool.

We compared our proposed system against two software and
two hardware implementations:

• LSTM-SW: Software implementation of baseline LSTM
models using GEMV function from OpenBLAS library.
Float32 values are used for both activations and weights.

• LSTM-HW: Hardware (FPGA) implementation of base-
line LSTM models comprised of 8 parallel 1D systolic
arrays for the dense matrix-vector computation (loosely
inspired by [20]), followed by a non-linear unit.

• SVDn-SW: Software implementation of the SVD opti-
mization of the LSTM models that utilizes the same
weight values of SVDn-HW before quantization. SVDn-
SW performs computations on dense weight matrices,
despite having many zero values since the OpenBLAS
library does not support sparse computation.

• SVD1-HW: A hardware (FPGA) implementation follow-
ing the design methodology described in [9], where the
mapping of each LSTM model is optimised in isolation.

B. Validation of accuracy, performance and resource models

Next, we present a brief validation of the accuracy, perfor-
mance and resource models presented in Section V.

Regarding the validation of the accuracy model, in Figure 5
we show different design points for the proposed architecture
characterized by the (average) MSE of its approximated LSTM
weight matrices and the accuracy drop of the result, when
compared to the correct output. Note that in this Figure we
include design points for 32-bit floating-point as well as 8-
and 16-bit fixed point implementations.

In general, it is possible to observe that the lower accuracy
drop occurs for the lower values of MSE. Nevertheless, there
are design points where a low MSE results in high accuracy
drop. Consequently, choosing a design point with low MSE
is a necessary but not sufficient condition for achieving a low
accuracy drop of the result. An in-depth view is shown with
the expansion of the bottom left corner, where it is possible
to observe a correlation between the MSE and the accuracy
drop. The values in that region are though very small, with
very small differences between themselves. The red triangles

1.78 1.81 1.84 1.87 1.90 1.93 1.96 1.99
CTC [Ops/Byte]

16.5

17.0

17.5

18.0

18.5

At
ta

in
ab

le
 P

er
fo

rm
an

ce
 [G

Op
/s

]

Max Bandwidth (9.36 GB/s)

Fig. 6. Roofline model for our FPGA accelerator processing two LSTM layers
with I = 1024 and H = 512.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized measured execution time

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
es

itm
at

ed
 e

xe
cu

tio
n

tim
e

Design points

Fig. 7. Normalized observed execution time versus estimated execution time.

in the expanded section show the design points that we have
selected to explore in more detail.

Figure 6 shows the roofline model of our accelerator pro-
cessing two LSTM layers. The design points in the roofline
have different parametrizations of the elements reported in
Table I. We can notice that most of the design points hit
the bandwidth limit, meaning that the computation is mainly
memory-bound. The points highlighted by red triangles are
the ones selected in Figure 5 based on accuracy. Based on the
attainable performance of the roofline model, the validation of
the execution time estimation model (in equation 7) is depicted
in Figure 7. The estimated and measured values of execution
time are normalized to each one’s corresponding largest value.
From this Figure it is possible to observe a high correlation
between the estimated and the measured execution time, thus
allowing us to use the model as a way to predict which designs
achieve higher performance.

Lastly we validated the model for hardware resources. The
DSP utilization estimate perfectly matches the count reported
in place and route. The estimated BRAM usage shows a 1%
relative error on average when compared with HLS reports and
18% versus post place and route results. We believe that the
high error compared to post place and route BRAM utilization
is because the Xilinx SDSoC 2018.3 tool introduces (when
available) additional BRAMs for optimizations, which are hard
to foresee and accurately estimate.

C. Evaluation of the proposed design

Next, the evaluation of the proposed design is presented
in terms of execution time and accuracy drop of the output
result and compare it to the alternative designs. The results are
shown in Figure 8. The first observation is that, as expected,

0 1 2 3 4 5 6
Accuracy Drop [percentage points]

102

103

Ob
se

rv
ed

 E
xe

cu
tio

n
Ti

m
e

[m
s]

SVDn-HW
SVDn-SW
SVD1-HW [9]
LSTM-HW
LSTM-SW

Fig. 8. Actual exec. time vs. accuracy drop. Orig. network accuracy is 84.4%.

the baseline implementations without approximation (LSTM-
SW and LSTM-HW) are the only ones achieving a 0% accuracy
drop. Nevertheless, this is achieved at a high latency, higher
than any other design presented. Another expected observation
is the fact that all SVDn-SW points have a higher latency
than the corresponding SVDn-HW points. The difference ob-
served ranges between a factor of 3.1× and 5.6×. Another
interesting comparison is between the proposed SVDn-HW
and the previously proposed SVD1-HW. In particular, it can
be observed that the fastest SVDn-HW design is 1.7× faster
than the fastest SVD1-HW, considering all plotted points have
acceptable accuracy. The most accurate SVDn-HW design has
14x lower accuracy drop than the most accurate SVD1-HW,
considering all plotted points have acceptable performance.
This is explained by the fact that SVD1-HW applies a similar
SVD-based methodology as our approach but does not exploit
possible redundancies between weight matrices across LSTM
models. As there is a trade-off between accuracy drop and
performance, the best SVDn-HW design in the pareto-front is
2× faster and 4.5× more accurate than the best SVD1-HW.

VII. RELATED WORK

Significant research effort has been focused on the efficient
mapping of computationally heavy Convolutional Neural Net-
works on devices, leading to a number of automated toolchains
[21] [22], [23] and compression methods [11], [24], [25]. In
contrast to the CNN mapping, mapping of Recurrent Neural
Networks and their variants (LSTMs) pose different challenges
as the systems are memory-bounded.

As such, previous research aiming to address the memory-
bound limitation of accelerating the execution of given LSTM
models have focused in the reduction of either the data volume
transferred between the off-chip memory and accelerator, or
the amount of data that needs to be stored, thus enabling their
complete storage on device. Early representative works in this
area are [26], [27]. Common investigated techniques include
parameter pruning, parameter sharing, and compression using
lossy and lossless schemes. In parallel, effort has been put on
the design of accelerator architectures that support the sparsity
of the data and the computational patterns introduced by those
compression methods [10], [11].

In the case where the LSTM optimisation can be considered
during the training stage, research effort has focused on the
extreme quantization of the parameters even to binary values
[28]. However, the underlying assumption of availability of

training data prohibits the application of those approaches in
a large number of cases. Thus, effort has been placed on
approaches that can be applied post-training. ESE [10] propose
a load-balancing aware compression methodology, along-side
an FPGA-specific architecture for speech processing. The
compression scheme is based on parameter pruning and quan-
tization, where their proposed architecture can operate directly
with irregular patterns. To further address load balancing
challenges stemmed from sparse parameter matrices, [29]
and [30] propose novel sparse matrix formats, which allow
improved load balancing capabilities across the processing
elements. Nevertheless, even though the above methods do not
require a training step, access to the training data is required
for the pruning and the fine-tuning of the weights in order to
achieve minimum penalty on the accuracy. Significant perfor-
mance gains have been reported for custom hardware-based
solutions in the case where the on-chip device memory can
accommodate the parameters of the LSTM model, removing
as such the requirement of accessing off-chip memory [28],
[31]–[33]. However, such assumption severely restricts the
application of these approaches and only few works [10], [26],
[27], [34] address the general problem where the parameters of
the compressed LSTM model do not fit in the on-chip memory,
as is the case of the work presented in this paper.

Closer to this work are the works by Kouris et. al. [12] and
Rizakis et. al. [9], that propose an SVD-based refining scheme
for the approximation of the LSTM weight matrices.

The proposed work considers the more complex problem
of mapping on a computing device multiple LSTM models
that operate on synchronised inputs. The work focuses on
exploiting any redundancies within and across the parame-
ters of the models in order to produce a mapping that co-
optimised the execution of all models. Previous pruning-based
approaches can be used to further extend the impact of the
proposed work through their application on each refinement
stage, leading towards sparse computations, rather than aiming
for a structured sparsity.

VIII. CONCLUSIONS

The paper presented a framework for the efficient mapping
of multiple LSTMs on an FPGA device. By altering the
structure of the computations it allows the co-optimisation
of the scheduling of such computations and the underlying
hardware parameters, while taking into account the resource
constraints of the targeted device. The presented methodology
offers the first compression scheme across multiple LSTM
models. It offers better accuracy and performance compared
to handling each LSTM separately and can be integrated
with other existing lossy and lossless compression approaches.
Even though a structured pruning approach is investigated in
this work, the framework can be extended to allow a hybrid
approach where each tile can be expressed through a sparse
structure, allowing as such a finer design space exploration of
the performance and computation to communication ratio.

REFERENCES

[1] W. Byeon, T. M. Breuel, F. Raue, and M. Liwicki, “Scene labeling
with LSTM recurrent neural networks,” in 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3547–
3555.

[2] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and
S. Khudanpur, “Recurrent neural network based language model,”
in INTERSPEECH 2010, 11th Annual Conference of the
International Speech Communication Association, Makuhari, Chiba,
Japan, September 26-30, 2010, T. Kobayashi, K. Hirose, and
S. Nakamura, Eds. ISCA, 2010, pp. 1045–1048. [Online]. Available:
http://www.isca-speech.org/archive/interspeech 2010/i10 1045.html

[3] K. Greff, R. K. Srivastava, J. Koutnk, B. R. Steunebrink, and J. Schmid-
huber, “LSTM: A Search Space Odyssey,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 28, no. 10, pp. 2222–2232, 2017.

[4] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How to construct deep
recurrent neural networks,” in Proceedings of the Second International
Conference on Learning Representations (ICLR 2014), 2014.

[5] Yong Du, W. Wang, and L. Wang, “Hierarchical recurrent neural network
for skeleton based action recognition,” in 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1110–
1118.

[6] S. Zhang, X. Liu, and J. Xiao, “On geometric features for skeleton-
based action recognition using multilayer lstm networks,” in 2017 IEEE
Winter Conference on Applications of Computer Vision (WACV), 2017,
pp. 148–157.

[7] H. Wang and L. Wang, “Modeling temporal dynamics and spatial
configurations of actions using two-stream recurrent neural networks,”
in 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE Computer
Society, 2017, pp. 3633–3642. [Online]. Available: https://doi.org/10.
1109/CVPR.2017.387

[8] J. Li, M.-T. Luong, and D. Jurafsky, “A hierarchical neural autoencoder
for paragraphs and documents,” arXiv preprint arXiv:1506.01057, 2015.

[9] M. Rizakis, S. I. Venieris, A. Kouris, and C. Bouganis, “Approximate
FPGA-Based LSTMs Under Computation Time Constraints,” in Applied
Reconfigurable Computing. Architectures, Tools, and Applications
- 14th International Symposium, ARC 2018, Santorini, Greece,
May 2-4, 2018, Proceedings, 2018, pp. 3–15. [Online]. Available:
https://doi.org/10.1007/978-3-319-78890-6 1

[10] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo,
S. Yao, Y. Wang, H. Yang, and W. B. J. Dally, “ESE: Efficient
Speech Recognition Engine with Sparse LSTM on FPGA,” in
Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA 17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 7584. [Online].
Available: https://doi.org/10.1145/3020078.3021745

[11] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[12] A. Kouris, S. I. Venieris, M. Rizakis, and C.-S. Bouganis, “Approximate
LSTMs for Time-Constrained Inference: Enabling Fast Reaction in Self-
Driving Cars,” ArXiv, vol. abs/1905.00689, 2019.

[13] C.-S. Bouganis, S.-B. Park, G. A. Constantinides, and P. Y. Cheung,
“Synthesis and optimization of 2D filter designs for heterogeneous
FPGAs,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 1, no. 4, pp. 1–28, 2009.

[14] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[15] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA international symposium on
field-programmable gate arrays, 2015, pp. 161–170.

[16] H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms.

[17] “Fashion-MNIST,” https://github.com/zalandoresearch/fashion-mnist,
accessed: 2020-11-13.

[18] “Basic classification: Classify images of clothing,” https://www.
tensorflow.org/tutorials/keras/classification, accessed: 2020-11-13.

[19] “Hierarchical RNN (HRNN) to classify MNIST digits,” https://github.
com/keras-team/keras/blob/master/examples/mnist hierarchical rnn.py,
accessed: 2020-06-08.

[20] J. de Fine Licht, G. Kwasniewski, and T. Hoefler, “Flexible Com-
munication Avoiding Matrix Multiplication on FPGA with High-Level
Synthesis,” in The 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2020, pp. 244–254.

[21] S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for mapping
convolutional neural networks on fpgas: A survey and future directions,”
ACM Comput. Surv., vol. 51, no. 3, Jun. 2018. [Online]. Available:
https://doi.org/10.1145/3186332

[22] S. I. Venieris and C. Bouganis, “fpgaConvNet: A Framework for
Mapping Convolutional Neural Networks on FPGAs,” in 2016 IEEE
24th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2016, pp. 40–47.

[23] ——, “fpgaconvnet: Mapping regular and irregular convolutional neural
networks on fpgas,” IEEE Transactions on Neural Networks and Learn-
ing Systems, vol. 30, no. 2, pp. 326–342, 2019.

[24] E. Wang, J. J. Davis, R. Zhao, H.-C. Ng, X. Niu, W. Luk,
P. Y. K. Cheung, and G. A. Constantinides, “Deep neural network
approximation for custom hardware: Where weve been, where were
going,” ACM Comput. Surv., vol. 52, no. 2, May 2019. [Online].
Available: https://doi.org/10.1145/3309551

[25] A. Kouris, S. I. Venieris, and C. Bouganis, “CascadeCNN: Pushing the
Performance Limits of Quantisation in Convolutional Neural Networks,”
in 2018 28th International Conference on Field Programmable Logic
and Applications (FPL), 2018, pp. 155–1557.

[26] A. X. M. Chang and E. Culurciello, “Hardware accelerators for recurrent
neural networks on FPGA,” in 2017 IEEE International Symposium on
Circuits and Systems (ISCAS), 2017, pp. 1–4.

[27] Y. Guan, Z. Yuan, G. Sun, and J. Cong, “FPGA-based accelerator for
long short-term memory recurrent neural networks,” in 2017 22nd Asia
and South Pacific Design Automation Conference (ASP-DAC), 2017, pp.
629–634.

[28] V. Rybalkin, A. Pappalardo, M. M. Ghaffar, G. Gambardella, N. Wehn,
and M. Blott, “FINN-L: Library Extensions and Design Trade-Off
Analysis for Variable Precision LSTM Networks on FPGAs,” in 2018
28th International Conference on Field Programmable Logic and Ap-
plications (FPL), 2018, pp. 89–897.

[29] J. Park, W. Yi, D. Ahn, J. Kung, and J. Kim, “Balancing Computation
Loads and Optimizing Input Vector Loading in LSTM Accelerators,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, pp. 1–1, 2019.

[30] S. Cao, C. Zhang, Z. Yao, W. Xiao, L. Nie, D. Zhan, Y. Liu,
M. Wu, and L. Zhang, “Efficient and Effective Sparse LSTM
on FPGA with Bank-Balanced Sparsity,” in Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA 19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 6372. [Online]. Available:
https://doi.org/10.1145/3289602.3293898

[31] J. C. Ferreira and J. Fonseca, “An FPGA implementation of a long
short-term memory neural network,” in 2016 International Conference
on ReConFigurable Computing and FPGAs (ReConFig), 2016, pp. 1–8.

[32] M. Lee, K. Hwang, J. Park, S. Choi, S. Shin, and W. Sung, “FPGA-Based
Low-Power Speech Recognition with Recurrent Neural Networks,” in
2016 IEEE International Workshop on Signal Processing Systems (SiPS),
2016, pp. 230–235.

[33] V. Rybalkin, N. Wehn, M. R. Yousefi, and D. Stricker, “Hardware
architecture of Bidirectional Long Short-Term Memory Neural Network
for Optical Character Recognition,” in Design, Automation Test in
Europe Conference Exhibition (DATE), 2017, 2017, pp. 1390–1395.

[34] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun,
W. Zhang, and J. Cong, “FP-DNN: An Automated Framework for
Mapping Deep Neural Networks onto FPGAs with RTL-HLS Hybrid
Templates,” in 2017 IEEE 25th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2017, pp.
152–159.

