PROTAC-Degradation-Predictor: Documentation and Overview
PROTAC-Degradation-Predictor is a Python package designed to predict the activity of PROTAC molecules using advanced machine learning techniques. The tool aims to assist researchers in evaluating the potential effectiveness of PROTACs, a novel class of drugs that target protein degradation.
The package Github repository can be found here.
Introduction
PROTACs (Proteolysis Targeting Chimeras) are a class of molecules that induce the degradation of specific proteins. This package allows researchers to predict the activity of PROTACs by leveraging a variety of machine learning models, including XGBoost and PyTorch-based pretrained neural networks.
The primary functionalities of this package include: - Predicting PROTAC activity using different machine learning models. - Accessing curated datasets for training and evaluation. - Hyperparameter tuning and model training using Optuna.
Features
Machine Learning Models: Utilize XGBoost, PyTorch, and scikit-learn models to predict PROTAC activity (refer to the
protac_degradation_predictor.protac_degradation_predictor.get_protac_active_proba()
function).Dataset Handling: Load and manage datasets specific to PROTAC research (refer to the
protac_degradation_predictor.data_utils.load_curated_dataset()
function).Customizability: Tune model hyperparameters and experiment with different model configurations (refer to the
protac_degradation_predictor.optuna_utils.hyperparameter_tuning_and_training()
function).
Quickstart
To get started with PROTAC-Degradation-Predictor, follow these steps:
Installation: Install the package using pip:
Basic Usage: Here’s an example of how to predict PROTAC activity:
from protac_degradation_predictor import get_protac_active_proba smiles = "CC(C)C1=CC=C(C=C1)C2=NC3=CC=CC=C3C(=O)N2" e3_ligase = "Q9Y6K9" target_uniprot = "P04637" cell_line = "HCT116" prediction = get_protac_active_proba( protac_smiles=smiles, e3_ligase=e3_ligase, target_uniprot=target_uniprot, cell_line=cell_line, device='cpu', use_models_from_cv=False, use_xgboost_models=True, study_type='standard' ) print(prediction)
For more detailed usage and customization, refer to the relevant sections below.
Contents
- protac_degradation_predictor
- protac_degradation_predictor package
- Subpackages
- Submodules
- protac_degradation_predictor.config module
- protac_degradation_predictor.data_utils module
- protac_degradation_predictor.optuna_utils module
- protac_degradation_predictor.optuna_utils_xgboost module
- protac_degradation_predictor.protac_dataset module
- protac_degradation_predictor.protac_degradation_predictor module
- protac_degradation_predictor.pytorch_models module
- protac_degradation_predictor.sklearn_models module
- Module contents
Getting Help
If you encounter any issues or have questions, please refer to the following resources:
Documentation: Full API documentation and user guide.
GitHub Issues: Report bugs or request features on the GitHub Issues page.
Contributing: Learn how to contribute to the project by reading our Contribution Guidelines.
License
This project is licensed under the MIT License. See the LICENSE file for details.
About
Author: Stefano Ribes
Version: v1.0.2
Built with Sphinx using the Read the Docs theme.
This documentation was last updated on August 27, 2024.